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Abstract

Direct volume rendering has become an essential tool to explore and analyse 3D medical

images. Despite several advances in the field, it remains a challenge to produce an image

that highlights the anatomy of interest, avoids occlusion of important structures, provides an

intuitive perception of shape and depth while retaining sufficient contextual information.

Although the computer graphics community has proposed several solutions to address spe-

cific visualization problems, the medical imaging community still lacks a general volume ren-

dering implementation that can address a wide variety of visualization use cases while

avoiding complexity. In this paper, we propose a new open source framework called the Pro-

grammable Ray Integration Shading Model, or PRISM, that implements a complete GPU

ray-casting solution where critical parts of the ray integration algorithm can be replaced to

produce new volume rendering effects. A graphical user interface allows clinical users to eas-

ily experiment with pre-existing rendering effect building blocks drawn from an open data-

base. For programmers, the interface enables real-time editing of the code inside the blocks.

We show that in its default mode, the PRISM framework produces images very similar to

those produced by a widely-adopted direct volume rendering implementation in VTK at com-

parable frame rates. More importantly, we demonstrate the flexibility of the framework by

showing how several volume rendering techniques can be implemented in PRISM with no

more than a few lines of code. Finally, we demonstrate the simplicity of our system in a

usability study with 5 medical imaging expert subjects who have none or little experience with

volume rendering. The PRISM framework has the potential to greatly accelerate develop-

ment of volume rendering for medical applications by promoting sharing and enabling faster

development iterations and easier collaboration between engineers and clinical personnel.

Background

Introduction

In recent years, the ubiquity of programmable Graphics Processing Units (GPUs) has enabled

the use of direct volume rendering (DVR) to visualize 3D medical images at interactive frame
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rates. An important advantage of DVR is that it enables interactive exploration of complex 3D

volumes, such as the ones produced by magnetic resonance (MR) and computed tomography

(CT) scanners, without the need for prior segmentation and processing. For this reason, DVR

has the potential to greatly improve the visualization capabilities of a wide variety of medical

imaging devices such as surgical navigation systems, interventional radiology systems and pic-

ture archiving and communication systems (PACS).

Despite the interactivity of current DVR techniques, producing an informative and per-

ceptually sound picture for every visualization task remains a challenge. The simple color

and opacity transfer functions implemented in most DVR systems lack the discriminative

power to separate different tissue types with similar volume intensities. It is often difficult to

adjust the rendering parameters to provide a correct perception of shape and depth of ana-

tomical structures. In many cases, rendered images are overly cluttered and present inconve-

nient occlusion patterns where structures of interest are hidden by less relevant parts of the

anatomy. There is an extensive body of literature that addresses one or more of these prob-

lems. A family of techniques, often referred to as focus+context, seek to emphasize important

image structures (focus) and filter out of less relevant details while maintaining sufficient

information for orientation (context) [1–7]. Different types of transfer functions enable bet-

ter separation of tissue types [8,9] and several techniques improve shape and depth percep-

tion using lighting effects [10–20] or depth-based strategies [21–25]. In many cases, simple

heuristics combined with information from different image modalities can greatly improve

the quality of rendering for specific medical tasks[26–29]. Unfortunately, only a few of these

techniques have found their way to systems that are commonly used in clinical research and

medical practice.

In this paper, we present the Programmable Ray Integration Shading Model, or PRISM.

The goal of the PRISM framework is to implement a GPU-based DVR module that can pro-

duce a wide variety of volume rendering effects while remaining extremely simple to use. We

achieve this goal by allowing users to modify key areas of the rendering pipeline in real time.

Clinically oriented personnel or researchers are able to experiment with interchangeable

blocks available from a database of examples presented in this paper. For more technically

oriented researchers and programmers, PRISM enables real-time editing of those blocks of

code to produce novel rendering effects. Rather than defining a new GPU volume rendering

method, the main contribution of this paper is to propose a framework that exposes an abstract

representation of the volume rendering pipeline while hiding complex details of the technical

implementation. We demonstrate both the flexibility of the framework for programmers by

showing volume rendering effects examples that can be implemented with no more than a few

lines of code and the ease of use of the framework through a user study where non-program-

mers were able to reproduce several effects by combining existing blocks of code through a

graphical user interface. The framework is implemented as a set of classes for the Visualization

Toolkit (VTK), which is already used as the rendering backend of a majority of open source

medical imaging programs such as 3D Slicer[30,31], MITK[32,33], ITKSnap[34,35], CustusX

[36,37] and IBIS Neuronav[38,39]. The framework can thus easily be integrated in all these

platforms already in use in many clinical research facilities to enable rapid prototyping of new

visualization methods aimed at specific clinical applications.

Volume rendering basics

In DVR, volumes of data sampled on a rectilinear grid such as MR and CT scans are viewed as

blocks of semi-transparent medium of varying density. The scalar value of the data at every

point within the volume is mapped to optical properties such as color and opacity. Images are
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rendered by integrating the effect of those optical properties along a viewing ray defined for

every pixel.

In practice, considering every possible emission, reflection and refraction of light in the

medium is intractable and approximations must be made. Max et al. established a series of

optical models[40] that approximate the rendering equation with different levels of realism.

The most widely used is the emission-absorption model where each voxel of the volume is

treated as a source of light that is partially absorbed by other voxels on the way to a virtual cam-

era. The rendering integral can be approximated by accumulating the emissive contribution of

volume samples taken at regular interval along a ray cast from every pixel of the image plane as

illustrated in Fig 1.

Several methods have been proposed to accelerate computation of DVR, some of which use

the ray-casting approach explicitly and others that use mathematically equivalent formulations

to take advantage of different hardware architectures. Lacroute and Levoy reduce the DVR

computation to a sequence of simple 2D image composites and a final warping operation[41].

Early approaches to DVR on the GPU relied on 2D Texture mapping[42]. Later, the introduc-

tion of 3D texture mapping allowed rendering of a set of view-aligned planes [43], removing

some of the artefacts usually associated with 2D texturing methods. The introduction of GPU

programming languages has enabled users to implement ray-casting on graphics hardware

[44]. The technique has become very popular due to its simplicity and speed through optimiza-

tion with early ray termination (ERT) and empty space skipping [45]. In this paper, we use the

GPU ray-casting approach to volume rendering.

Related work

The most widely used DVR implementation in the field of medical imaging is the open source

Visualization Toolkit’s (VTK) volume rendering module. VTK implements various GPU-based

rendering methods including 2D texture mapping (vtkVolumeTextureMapper2D), 3D texture

Fig 1. Illustration of the emission-absorption model used to compute the color of a pixel. A ray is cast from the virtual camera through the pixel in the

image plane. The intersection with the volume is found and the volume is sampled at regular interval, the sample value is mapped to optical properties

which are composited to obtain the pixel color.

https://doi.org/10.1371/journal.pone.0193636.g001
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mapping (vtkVolumeTextureMapper3D) and ray casting (vtkVolumeRayCastMapper). The

implementation of the ray casting method is similar to the one proposed by Kruger et al.[44]. It

allows users to choose between different ray casting functions, including compositing, iso-sur-

face and maximum intensity projection, but it can render only a single volume at a time. Kris-

sian et al. [46] proposed a VTK class that can simultaneously render 2 volumes and later,

Bozorgi et al. [47] extended the idea to support an arbitrary number of volumes.

Several other open source volume rendering solutions exist. Many of them rely internally

on VTK (e.g., 3D Slicer[30,31], ParaView[48,49], Tomviz[50]). However, some of these alter-

native solutions are available only as standalone applications, which makes it difficult to

incorporate them in new applications. ImageVis3D[51,52] implements the ClearView[1]

framework to separate structures of interest from contextual information and supports very

high resolution volumes. VolumeShop[53,54] is a Windows-only application that allows for

the combination of several volumes, but development has stopped since 2005. Voreen[55,56]

supports complex illumination models including shadows and scattering. While development

snapshots of the source code are available to download, there is no public code repository.

Inviwo[57,58] reproduces all the basic functionality of Voreen, but is more advanced and is

openly developed. It is currently the cutting edge platform for research in volume rendering.

However, Inviwo aims at a user base of computer graphics researchers. Its interface is complex

and the code base is not suitable for integration in a medical imaging application where medi-

cal personnel could experiment with new rendering techniques within their typical workflow.

The Visualization Library (VL)[59] provides a thin layer of abstraction on top of the graphics

API (OpenGL) that facilitates the implementation of volume renderers. This approach maxi-

mizes flexibility for expert graphics programmers but cannot be used directly by clinically ori-

ented researchers or medical personnel. MeVisLab[60,61] supports the implementation of

modules to create custom applications, but it is not open-source. The core of the framework

has extensive DVR capabilities: shadow mapping, boundary and silhouette enhancement, local

ambient occlusion and tone shading. Through extensions, it supports a mechanism similar to

PRISM to write custom volume rendering shaders[62], but using a slice-based rendering

method instead of ray casting.

Unlike these other toolkits and software packages, the PRISM framework presented in this

paper can easily be embedded in existing medical imaging application as it is based on a VTK

class. The PRISM framework simplifies many aspects of volume rendering and thus enables

many different rendering techniques to be implemented with only a few lines of code as

shown in the examples below. PRISM is developed in a public Git repository and distributed

under the very liberal BSD 3-clause license.

Methods

The PRISM framework implements a GPU-accelerated ray-casting volume rendering method.

The core of the framework is implemented as a VTK class (vtkPRISMVolumeMapper), which

enables easy integration in different medical imaging applications and combination with all

other types of graphical primitives supported by VTK. Internally, the ray-casting algorithm is

implemented as an OpenGL Shading Language (GLSL) program. The IBIS Neuronav system

[38], an open source image-guided neurosurgery platform, is the first application to embed the

PRISM framework in a graphical user interface (GUI) to facilitate its use by non-programmers.

VTK class functionality

The basic functionality of the vtkPRISMVolumeMapper class is similar to that of other VTK

volume mappers, with the following additional features:

PRISM: An open source volume rendering framework
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1. Custom GLSL code: users can provide snippets of custom GLSL code to replace 3 key steps

of the ray casting algorithm. This feature is detailed in the GLSL ray integration section

below.

2. Multiple input volume support: Users can provide multiple input volumes to the mapper,

each of which is associated with a color and opacity transfer function, which may be

accessed from the custom GLSL code.

The combination of these additional features greatly facilitates the implementation of a

wide variety of volume rendering effects, as we will demonstrate below.

VTK class implementation

The DVR technique used in vtkPRISMVolumeMapper is similar to the method of Kruger

et al.[44]. The method consists of two rendering passes. The first pass determines the equation

of the rays cast for every pixel in the image and the second pass computes the ray integration.

The first pass takes advantage of the fast interpolation capabilities of the GPU to compute

intersection of rays with the volume for every pixel. The front and back faces of a polygonal

model corresponding to the bounding box of the volume are rendered in two separate tex-

tures. Each of the corners of the box is assigned a color that encodes the normalized 3D

coordinate of the vertex in the volume. Before rendering, the box is clipped with the near

and far clipping planes of the renderer to avoid creating holes when those planes intersect

the volume (e.g. when the camera is inside of the volume). The resulting textures, shown in

Fig 2a and 2b, effectively encode, for each pixel, the two intersection points of a ray with the

volume.

The second pass consists of drawing an image-sized plane with the ray integration shader

program enabled. For every pixel, the program samples from the front and back face textures

rendered in the first pass to obtain the intersection points between the ray and the volume and

computes the ray equation. Bounds of the ray integration can further be adjusted by sampling

the depth buffer (Fig 2c) generated by other polygonal geometry in the 3D scene. This enables

correct rendering of polygonal models that are interleaved with the volumes. Fig 2c shows the

content of the depth buffer prior to volume rendering (but after rendering the surface of a

tumor using a standard surface rendering technique) and Fig 2d shows an MR volume ren-

dered with PRISM and correctly interleaved with the tumor surface.

Fig 2. Illustration of the 2-pass volume rendering algorithm implemented in PRISM. In the first pass, the front and back faces of the bounding

box of the volume are rendered in two separate textures as illustrated in (a) and (b). The color assigned to the bounding box vertices encodes the

normalized coordinate of the vertices in the volume. The box is clipped using near and far clipping planes of the renderer to avoid creating holes in the

image. In the second pass, textures (a) and (b) are used to compute ray equation and run the integration. Bounds of the ray are adjusted using depth

buffer accumulated by VTK for the rendering of other primitives, in this case, the 3D surface of a tumor (c). Doing so allows the correct interleaving of

surfaces and volumes as shown in (d).

https://doi.org/10.1371/journal.pone.0193636.g002
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Ray integration

The ray integration method is described in Algorithm 1 below.

Algorithm 1 is similar to conventional ray integration algorithms such as the one imple-

mented in the VTK volume rendering module, except for the three lines highlighted in bold

characters. These functions are placeholders for custom GLSL code provided by the user, which

we will refer to as Init, Volume and StopCondition shaders for the remainder of the paper. The

Init shader enables users to alter start, end and orientation of the rays as well as the initial pixel

color before ray integration starts. It can also be used to initialize variables that are used in the

Volume shaders. The Volume shader enables users to have full control over the contribution

of each volume to the color accumulated at each step of the ray integration procedure. Finally,

the StopCondition shader is used to stop ray integration before the volume is completely tra-

versed, and is thus used mostly for optimization purposes. To facilitate the development of

such custom shaders, the PRISM framework provides a set of built-in variables and functions.

Algorithm 1. Ray integration algorithm where rayStart and rayEnd are the position, in

normalized volume space, of the entry and exit points of the ray, sampleRGBA is the

color and alpha value accumulated at each point along the ray and pixelRGBA is the

final pixel color. Init, Volume and StopCondition functions in bold characters are place-

holders for custom code provided by users.

rayStart = sample (textureFront)

rayEnd = sample (textureBack)

rayDir = normalize (rayEnd−rayStart)

depth = sample (depthBufferTexture)

AdjustRay (rayStart, rayEnd, depth)

Init (pixelRGBA, rayStart, rayEnd)

pos = rayStart

pixelRGBA = (0, 0, 0, 0)

while pos< rayEnd

{

sampleRGBA = (0, 0, 0, 0)

for each volume v

sampleRGBA = Volume(v, pos, sampleRGBA)

pixelRGBA = alpha_blend (pixelRGBA, sampleRGBA)

pos + = rayDir � step

StopCondition()

}

PRISM: An open source volume rendering framework
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Built-in variables include properties of the volume, the current ray and the rendering environ-

ment such as the position of the camera and light source. Built-in functions facilitate sampling

from the volumes, converting and evaluating transfer functions. Built-in functions also exist to

help with lighting calculation, for example, the ComputeGradient function, which computes the

intensity gradient of the volume at a specific location using the finite difference method, can be

used to approximate surface normal. Built-in function are provided only to facilitate the devel-

opment of shaders, but users are free to provide their own implementation of a similar function-

ality. A detailed list of built-in function and variables is provided in S1 Appendix.

Note that because the custom GLSL code is provided to vtkPRISMVolumeMapper as

strings, applications using the class can change the code without recompiling, enabling users

to experiment with new shaders interactively.

Integration in IBIS Neuronav

To facilitate real time editing of ray casting shaders, it is convenient to embed the vtkPRISM-

VolumeMapper class in a graphical user interface (GUI). Currently, only one such implemen-

tation exists as part of the IBIS Neuronav platform[38] where PRISM is integrated as an IBIS

plugin. The plugin enables users to combine an arbitrary number of volumes, interactively

manipulate the parameters of the mapper and edit transfer functions for each of the volumes.

Most importantly, the GUI permits editing of the custom shader code and the results are

shown in real-time in the 3D window of the application.

Volume rendering effects database

The integration of the PRISM framework in a GUI such as the IBIS platform enables the

rapid development of new volume rendering effects. Despite the simplicity of the shading

language involved, the shader editing feature of the GUI interface is primarily intended for

computer graphics experts and requires a minimum basic knowledge of GLSL program-

ming. For the benefit of a less technical audience, we created the PRISM database, a place

where the PRISM volume rendering examples are shared publicly. The database consists of a

list of files, each of which loads one volume rendering example into the IBIS Neuronav sys-

tem. Currently, the database contains the IBIS files required to reproduce all the volume

rendering examples discussed in this paper. The database and compiled executables of IBIS

Neuronav as well as instructions on how to load the examples in the program are available at

ibisneuronav.org/prism.

Collection of the data used in the study was approved by the Montreal Neurological Insti-

tute’s Research Ethics Board (REB). All procedures followed were in accordance with the

ethical standards of the responsible committee on human experimentation (institutional

and national) and with the Helsinki Declaration of 1975, as revised in 2008[63]. Written

informed consent was obtained from all patients for being included in the study.

Usability study

To demonstrate that the PRISM framework can be useful and simple enough to use for non-

programmers and users without a deep understanding of the principles of volume rendering,

we designed a user study using the GUI of the PRISM plugin in the IBIS platform. The study

consisted of three parts. The first part is a five minutes tutorial given by the experimenter that

summarizes the basic principles of volume ray-casting and the functionality of the different

GUI elements of the PRISM plugin. In the second part, users sit at a workstation where the

IBIS software is installed and are asked to use the GUI interface of the PRISM plugin to repro-

duce three different volume rendering examples shown on an alternate screen. We use three

PRISM: An open source volume rendering framework
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examples that are described in details in the results section below: volume carving, blood flow

and decluttering. For each example, the subjects need to use the interface to find the right com-

bination of volumes, existing shaders and parameters. For the first two examples, a step by step

description of the actions to take was provided on a sheet of paper (c.f., S2 Appendix). For the

last example, users were required to find the right combination of parameters to produce the

desired visualization without explicit instructions. For this last example, a maximum of five

minutes was allocated. Throughout the execution of the tasks, users were asked to think aloud,

describe their actions and report any inconsistencies or non-intuitive features in the interface.

Each session was video-recorded for further analysis. In the final part of the study, users are

asked to fill a web-based questionnaire about their experience with PRISM. The questionnaire

consists of 3 parts. The first part assesses prior knowledge of volume rendering of the user. The

second part is a standard System Usability Scale (SUS) test [64] and finally, the third part con-

sists of questions that are more specific to the PRISM plugin interface. A copy of the question-

naire is provided in the S3 Appendix. All the questions, except for the last one, are answered

on a Likert scale from 1 to 5 (1 = strongly disagree, 5 = strongly agree). The last question

requested suggestion from the user on possible improvements to make the system more acces-

sible. In total, 5 subjects took part in the study. They are all medical imaging experts who have

little or no experience with volume rendering.

Results

Performance evaluation

The performance of the PRISM framework is highly dependent upon the implementation of

user-specified shaders as well as the number of volumes used for rendering. To verify the base

implementation, we compare the default modes of PRISM and the VTK volume renderer

(vtkGPUVolumeRaycastMapper). In its default mode, PRISM has only one input volume, no

Init or StopCondition shaders and a simple Volume shader that produces a color-mapped

volume sample for every step of the ray integration. It is thus equivalent to the existing VTK

volume renderer. An interesting optimization that is made possible by the StopCondition

shader in PRISM is early ray termination (ERT). It consists in stopping ray integration for a

pixel after the opacity (alpha) has reached a certain value.

Our comparison test ran both renderers on a PC equipped with an Intel Quad Core i7 pro-

cessor, 32Gb of RAM and an NVidia GeForce GTX 670 graphics card with 4Gb of video mem-

ory, running the Ubuntu 14.04 operating system with the proprietary NVidia graphics driver.

The test consisted of rendering a single volume of size 320x320x280 voxels into a 1129x1098

pixel window. The volume was rendered 1000 times with each renderer. The resulting frame

rates are reported in Table 1. Fig 3 shows the images obtained with both renderers. There is a

slight difference of contrast between the images which is most likely due to a window/level

adjustment step performed by the VTK renderer and not by PRISM.

Examples of rendering techniques

In this section, we demonstrate the flexibility of the PRISM framework by showing multiple

examples of volume rendering methods relevant to medical imaging. Each example is imple-

mented in PRISM with no more than a few lines of custom GLSL code.

Table 1. Comparison of the frame rates obtained with the VTK GPU raycast volume renderer and the PRISM

framework with and without the early ray termination (ETR) optimization with an alpha threshold of 0.99.

VTK PRISM PRISM w. ERT

81.9 fps 78.7 fps 111.9 fps

https://doi.org/10.1371/journal.pone.0193636.t001
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One important problem with volume visualization of medical images is the difficulty to

produce an image that highlights all details of the anatomical and functional structures of

interest while providing sufficient contextual information. We demonstrate the implementa-

tion of 3 methods that seek to facilitate separation of focus and context: volume carving[65],

opacity peeling[6] and decluttering [66]. Another important area of research in volume ren-

dering is the improvement of depth perception. Several methods that aim to improve depth

perception have been presented. In this section, we show 3 examples: Chroma-depth[67],

aerial perspective[68] and edge enhancement[69]. Finally, we present a new method where the

PRISM framework is used to animate blood flow from a CTA scan that was developed in col-

laboration with our neurosurgeons.

Volume carving. In many visualization problems, structures of interest may be occluded

by other regions of the volume with similar intensities. A simple solution to this problem, pro-

posed by Joshi et al. [65], is to interactively carve away a part of the volume. This can be easily

done in various ways with PRISM. A simple solution consists in using an Init shader that skips

the part of the volume that intersects with the area that should be carved away. One simply has

to compute the start and stopping coordinates of the carving shape. In our example image in

Fig 4b, we apply this technique to carve a spherical region away from an MRI volume. The

Fig 3. A 320x320x280 voxel volume rendered using the default modes. a) the VTK GPU raycast volume renderer, b) the flexible PRISM GPU raycast

framework and c) the PRISM framework with early ray termination (ERT).

https://doi.org/10.1371/journal.pone.0193636.g003

Fig 4. Illustration of volume carving and opacity peeling methods. (a) Original MRI volume, (b) Volume Carving with a spherical tool, (c) Opacity

peeling where the first layer is peeled off.

https://doi.org/10.1371/journal.pone.0193636.g004
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technique can easily be modified to carve regions of different convex shapes such as a cone or

a cylinder. The custom Init shader code used is shown in Algorithm 2 below. The interaction

point of PRISM is used to drive the center of the spherical region so that it can interactively be

manipulated.

Opacity peeling. Another solution to the occlusion problem is the opacity peeling tech-

nique proposed by Rezk-Salama and Kolb[6]. It consists in discarding the first n layers of tissue

when integrating a ray, where n is defined by the user. This is done by accumulating alpha

along the ray until a certain threshold is reached (T_high). Once the alpha value of a sample

falls below a second threshold (T_low), a new layer is started. Ray integration that will contrib-

ute to the final image starts only once the user-specified number of layers has been traversed.

The Volume shader used to generate the image of Fig 4c is shown in Algorithm 3 below.

Decluttering. For many visualization tasks, additional data may be available to help sepa-

rate structures of interest from the rest of the volume and thus help to focus attention on a par-

ticular location or structure. A good example is the visualization of CT angiography (CTA)

images where information about blood flow and vessel connectivity can be pre-computed.

Raw CTA volumes contain complex vessel structures that often lead to rendered images that

are difficult to interpret. We can improve the rendering quality by highlighting specific areas

of interest. While a simple geometric or transfer function mechanism may not be able to

Algorithm 2. Ray initialization code for volume carving. The code is using PRISM built-

in variable interactionPoint1, a user-defined 3D coordinate, used here to determine the

center of the sphere. currentDistance is a built-in variable that specifies the next integra-

tion position along the ray. interactionPoint1 can be manipulated interactively in the

3D window of IBIS.

// Determine if ray is intersecting the sphere

vec3 centerDir = interactionPoint1−rayStart;

float centerProjDist = dot (centerDir, rayDir);

vec3 centerProj = rayStart + rayDir � centerProjDist;

float distCenterProjCenter = length (centerProj−interactionPoint1);

// if we have an intersection, adjust ray integration start

if (distCenterProjCenter< sphereRadius)

{

float dcpc2 = distCenterProjCenter � distCenterProjCenter;

float sr2 = sphereRadius � sphereRadius;

float intersectDistance = centerProjDist + sqrt (sr2−dcpc2);

if (intersectDistance > 0.0)

currentDistance = intersectionDistance;

}

PRISM: An open source volume rendering framework
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separate areas of interest, the approach taken in [66] combines the CTA data with a second

volume which contains distance, constrained within the vessel tree, between each voxel and

the structure of interest, in this case an arteriovenous malformation (AVM). The distance can

be computed by a simple level-set front propagation method which is seeded at the AVM

nidus [29]. To obtain a decluttered image, the original volume is fed into PRISM as the first

input (Fig 5a) and a second volume containing the distance to the AVM (Fig 5b) is also pro-

vided. In this example, a very simple two-line Volume shader (Algorithm 4) simply multiplies

the contribution of this second volume with the previous one, yielding the decluttered image

of Fig 5c.

Note that in the shader, we don’t use the raw samples from the second volume (distance to

the AVM) to modulate color and opacity of the original volume but rather the color-mapped

sample (after application of the transfer function). This enables users to interactively adjust the

amount of decluttering that is desired by modifying the transfer function.

Algorithm 3. Volume shader for the opacity peeling technique. SampleVolumeWithTF

is a function built into PRISM to facilitate sampling volume intensity and obtaining the

corresponding color in the transfer function. The variables wantedLayer, T_high, T_low

are parameters of the algorithm and are defined in an Init shader. currentLayer and

layerAlpha are working variables also defined in the Init shader.

// Sample the volume at the current position

vec4 sample = SampleVolumeWithTF (volIndex, pos);

if (currentLayer < wantedLayer)

{

// find if it is time to peel off a layer

layerAlpha = layerAlpha + (1.0−layerAlpha) � sample.a;

if (layerAlpha > T_high && sample.a < T_low)

{

currentLayer = currentLayer + 1;

layerAlpha = 0.0;

}

}

else

{

// peeling done, compute regular ray integration

sampleRGBA + = sample;

}
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The simple technique presented here for decluttering is quite general and has various other

applications. The second volume can be replaced with any source of complementary informa-

tion such as a segmentation of a complex region of interest, or other kinds of precomputed

topological information.

Chroma-depth and aerial perspective. Chroma-depth rendering is a technique initially

developed by Richard Steenblik[67] and where depth (distance from the camera) is encoded

with color. Chroma-depth and its 2-color variant (pseudo chroma-depth) have been used in

various medical image visualization problems [22,23] and have been shown to improve depth

perception in the visualization of certain medical image types such as angiographic scans [25].

A similar technique, aerial perspective, represents objects that are more distant as fainter and

less contrasted. Both chroma-depth and aerial perspective can be implemented with the same

Volume shader in PRISM (Algorithm 5). By changing the set of colors used in the transfer

function, the same shader code can produce either the chroma-depth (smooth transition

between all hues), the pseudo chroma-depth (blue to red gradient) or the aerial perspective

effect (background color to white gradient) as illustrated in Fig 6.

Edge enhancement. Occlusion is an important ordinal depth cue. When visualizing com-

plex structures such as blood vessels in the brain, enhancing edges of the vessels can improve

depth perception by disambiguating depth ordering of overlapping vessels. One approach to

compute edges in volume rendering is to identify those voxels for which the 3D intensity gra-

dient in the volume data is perpendicular to the viewing direction[69]. In this example, we use

this strategy to compute the alpha value in a Volume shader using Eq 1 below.

a ¼ smoothstepðstepMin; stepMax; jj~g jj � ð1 � j~g �~r jÞÞ ð1Þ

Fig 5. Decluttering an angiographic CT to highlight the structure of interest, an AVM. (a) The original CTA volume rendered with Blinn-Phong

shading. (b) A volume containing the topological distance to the AVM for each voxel. (c) The decluttered image obtained by combining (a) and (b).

https://doi.org/10.1371/journal.pone.0193636.g005

Algorithm 4. Volume shader used for the second volume to produce the decluttering

effect.

vec4 sample = SampleVolumeWithTF (volIndex, pos);

fullSample � = sample;
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Where stepMin and stepMax are user-defined parameters that affect the gradient intensities

that are captured by the function,~g is the finite difference gradient computed by sampling the

volume and~r is a unit vector that defines the direction of the ray being integrated. The PRISM

code used to implement this edge rendering technique is shown in Algorithm 6.

Fig 7 illustrates the effect of the edge shader when applied to an angiographic CT as well as

how it can be combined with standard Blinn-Phong shading to produce an edge-enhanced

illustration of the blood vessels.

Algorithm 5. volume contribution custom code for chroma-depth. cameraPosition is a

built-in PRISM variable that contains the position of the camera in normalized volume

space. volumeDistanceRange is another built-in variable that contains the minimum

and maximum distance between the camera and the volume.

// Sample the volume at the current position

vec4 sampleAlpha = SampleVolumeWithTransferFunction (volIndex, pos);

// Compute normalized distance of sample to camera

float distCam = length (pos−cameraPosition);

float range = volumeDistanceRange.y−volumeDistanceRange.x;

float normalizedDistCam = (distCam−volumeDistanceRange.x) / range;

// Use transfer function to determine color based on distance

vec4 sample = SampleTransferFunction (volumeIndex, normalizedDistCam);

// Assign RGB based on distance and alpha based on volume content

sample.a = sampleAlpha.a;

sampleRGBA + = sample;

Fig 6. Chroma-depth volume contribution shader used with 3 different color transfer function produces. (a)Chroma-depth, (b)Pseudo chroma-

depth and (c)Aerial perspective.

https://doi.org/10.1371/journal.pone.0193636.g006
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Blood flow animation. In certain situations, it may be helpful to use motion to depict the

characteristics of the rendered volume. For example, when rendering angiographic data where

the progression of blood in the vessels may be computed using a sequence of images captured

at different time points after the injection of a tracing agent. To animate the blood flow, we

Algorithm 6. Volume shader used to compute edge enhancement.

// param initialization

float sampleThreshold = 0.1;

float gradStep = 0.0005;

vec2 step = vec2 (0.02, 0.06);

// shading

vec4 sample = SampleVolumeWithTF (volumeIndex, pos);

if (sample.a > sampleThreshold)

{

vec4 n = ComputeGradient (volumeIndex, pos, gradStep);

if (n.a > 0.0)

{

float factor = n.a � (1.0−abs(dot (rayDir, n.rgb)));

float alpha = smoothstep (step.x, step.y, factor);

sampleRGBA = vec4 (1.0, 0.0, 0.0, alpha);

}

}

Fig 7. Edge enhancement of an angiographic CT. The volume is rendered with (a) only the edge rendering shader, (b) Only a Blinn-Phong shader, (c)

Edge and Blinn-Phong shader combined.

https://doi.org/10.1371/journal.pone.0193636.g007
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take advantage of the possibility in PRISM to render multiple volumes simultaneously. The

first volume contains a raw angiographic CT and is rendered using a standard Blinn-Phong

Volume shader. The second volume contains the distance, within vessels, between the entry of

blood into the brain (i.e., the carotid and vertebral arteries) and each voxel. In the shader, the

values of this second volume are mapped to a sinusoid that is offset as a function of time and

the result is used to modulate the color of the first volume. Fig 8 shows a static image produced

with this technique. The result can be better appreciated in the video accompanying this paper

(S1 Video). Note that the flow information in this example was obtained using a rudimentary

simulation and does not depict real blood flow in the brain but is sufficient to demonstrate the

visualization principle. The custom Volume shader used to render the second volume is

shown in Algorithm 7 below.

Examples performance

The performance for all examples above has been measured by rendering 1000 times the final

image presented for each of the examples in a VTK window of resolution 1231x1102 pixels.

Fig 8. Blood flow depiction. (a) The original CTA volume rendered with Blinn-Phong shading. (b) Volume containing precomputed blood flow

information, i.e. distance, within vessels, between entry and exit of blood from the brain. (c) Volume from (b) combined with (a) using the Volume

shader of Algorithm 6. When the time parameter is updated to render each frame, the waves move along the vessels in the direction of the blood flow as

illustrated in the accompanying video (S1 Video).

https://doi.org/10.1371/journal.pone.0193636.g008

Algorithm 7. Volume shader for the second volume of blood flow animation. Sample-

Volume is a built-in function of PRISM to obtain the raw volume intensity. time is a

built-in variable.

// Sample the volume at the current position

vec4 volumeSample = SampleVolume (volumeIndex, pos);

// Compute a time varying sine wave along vessels

float sineVal = .75 + sin (1000.0 � volumeSample.x + time � float(5.0)) / 4;

// Multiply color by sine wave

sampleRGBA.rgb � = sineVal;
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For all examples, the ETR optimization was turned on. The resulting frame rates are shown in

Table 2.

Not surprisingly, volume carving and opacity peeling are the fastest to render as the dataset

used in those examples does not have a lot of empty space and thus benefits more from the

ETR optimization. Edge enhancement is the slowest. This can probably be explained by the

need to compute the gradient in both volume shaders involved (edge-enhancement and Blinn-

Phong). Gradient computation requires a large number of volume sampling operations which

tends to increase rendering time.

Usability study

All subjects of the study were easily able to follow the instructions for the first 2 volume ren-

dering examples to reproduce. For the last example, where no explicit instructions were

provided, 3 out of 5 participants were able to reproduce the image presented to them by

employing the same strategy as the one presented in the section on Decluttering above. A

fourth candidate was able to produce an image that was visually close to the target image, but

using a different combination of volumes and shaders. Thus, for most participants, a 5 minutes

tutorial and the execution of 2 examples was enough to be able to compose a new example on

their own using a set of shaders already developed by experts.

We analyzed the video recorded during the experiment with the 5 subjects to find the main

usability issues of the system. The main complaint from the users concerned the manipulation

of the transfer function, a feature that is not specific to PRISM, but almost universal in volume

rendering systems. All subjects reported a difficulty to understand the relationship between

the transfer function and the rendered result. Another request frequently made by users was to

provide a basic documentation that describes the behavior of the existing shaders. Finally, two

GUI adjustments were unanimously suggested by all subjects: Clearly distinguish buttons to

add and remove volumes from the buttons to add and remove shaders and provide tooltips for

all the GUI element.

The results from the online questionnaire filled by participants are summarized in Table 3

below.

Discussion

In this paper, we demonstrate both the flexibility of the PRISM framework and the quality of

its implementation. The tests of the PRISM framework show that its performance and the

default mode rendering quality is equivalent to that of a widely used open source GPU ray-

casting module provided by VTK. For most other algorithms presented, no reference imple-

mentation is available to compare with. However, given the public availability of both the code

Table 2. Frame rate in frames per second (fps) for the different volume rendering examples presented in this

paper. Note that pseudo chroma-depth and aerial perspective are not listed as they differ from chroma-depth only in

the content of the transfer function and not in the computation. In practice the frame rate difference was not

measurable.

Volume Carving 102.11 fps

Opacity Peeling 84.85 fps

Decluttering 33.72 fps

Chroma-depth 45.70 fps

Edge enhancement 22.95 fps

Blood flow 49.51 fps

https://doi.org/10.1371/journal.pone.0193636.t002
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and complete example files for all methods we presented in this paper, it is easy for other devel-

opers to propose alternative implementations and compare their performance with PRISM.

Through several examples, we have shown that the PRISM framework can be used to imple-

ment a wide variety of volume rendering methods. In many cases, the ray casting approach of

the framework simplifies the implementation of new methods due to its simplicity and allows

for powerful optimization techniques such as early ray termination and empty space skipping.

The results of the usability study that was conducted with medical imaging experts with lit-

tle or no experience of volume rendering shows that the system allows this category of users to

produce various types of rendering that are not available with conventional volume renderers.

They can do so by combining several shader components available from a public database

using a simple graphical user interface and without having to program.

The SUS score of 70.5 places the usability of the system in the range of acceptability accord-

ing to Bangor et al. who analyzed the result of more than 200 studies involving more than 2300

participants [70]. It is difficult to draw a clear conclusion from the score of individual ques-

tions, but we note that the questions that had the most negative impact on the final SUS score

(3 and 9) suggest that the score might be improved with a little more training of the subjects.

The answers to the first 2 questions of part 3 of the questionnaire suggest that the difficulties

experimented by the users are related to the manipulation of preexisting shaders more than to

the combination of multiple volumes. Results could probably be improved if, as suggested by

Table 3. Mean and standard deviation of the answers provided by the users on the online questionnaire. Each

question is answered on a scale of 1 to 5 (1 = strongly disagree, 5 = strongly agree). The System Usability Scale (SUS)

score (last line of part 2) is obtained by subtracting 1 from the score of each odd-numbered question and subtracting

the score of even-numbered from 5. We sum the results obtained for each question and multiply by 2.5 to obtain the

final score.

Part 1: experience with volume rendering

1- I have often used volume rendering software before 1.4 ± 0.9

2- I have a deep understanding of the underlying principles of volume rendering 1.8 ± 1.1

Part 2: System Usability Scale

1—I think that I would like to use PRISM 3.8 ± 1.1

2—I found PRISM unnecessarily complex 2.0 ± 0.7

3—I thought that PRISM was easy to use 3.2 ± 0.8

4—I think that I would need the support of a technical person to be able to use PRISM 2.4 ± 1.5

5—I found that the various functions in PRISM were well integrated 4.2 ± 1.3

6—I thought there was too much inconsistency in PRISM 1.4 ± 0.5

7—I would imagine that most people would learn to use PRISM very quickly 3.8 ± 1.3

8—I found PRISM very cumbersome to use 1.6 ± 0.5

9—I felt very confident using PRISM 3.0 ± 1.4

10—I needed to learn a lot of things before I could get going with PRISM 2.4 ± 1.5

System Usability Scale (SUS) score (/100) 70.5 ± 4.5

Part 3: PRISM specific questions

1—It was easy to combine multiple volumes using PRISM 4.8 ± 0.4

2—It was easy to understand the influence of each type of shader on the rendered image 3.4 ± 1.1

3—The system would be appropriate for medical technicians and doctors 4.2 ± 0.8

4—The system would be appropriate for medical imaging specialists 4.8 ± 0.4

5—The system would be appropriate for computer graphics programmers 4.4 ± 0.5

https://doi.org/10.1371/journal.pone.0193636.t003
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the users in their comments, documentation was provided for each one of them. The answers

to the last three questions suggests that the PRISM system is more appropriate for medical

imaging specialists than for other categories of users. Considering that all the participants to

the study fall into this category, they may not be able to judge the utility of the system for medi-

cal technicians and doctors as accurately. The usability of the system for graphics program-

mers has been extensively tested through its regular use at our institute. However, it still needs

to be tested with medical personnel involved with imaging. Given the challenges encountered

by medical imaging specialists, especially with the concept of the transfer function, another

layer of abstraction may be needed for this category of users. This new level of abstraction

would allow programmers and medical imaging specialists to package a specific combination

of volumes, shader components and transfer functions such that medical personnel would

only need to adjust a very small number of high-level parameters in order to produce the

desired image.

This work is not without some disadvantages. In particular, the proposed ray casting

approach is implemented in a single pass in the GPU, making it impossible for the ray integra-

tion code to access information computed for neighboring pixels. This disadvantage can often

be compensated by precomputing volumetric information or integrating each ray over a larger

neighborhood, but both alternatives are computationally expensive. In contrast, slice-based

approaches[43] conceptually propagate all rays in parallel, with a new rendering pass for every

step. It is thus possible to access neighborhood information computed in previous steps. This

property facilitates the development of methods such as shadow and scattering[11], depth of

focus[21] or volumetric halos [24]. In the future, a new hybrid approach may be necessary to

combine the advantages of both slice-based and ray casting volume rendering.

Future work

One of the current limitations of PRISM is the requirement that all volumes rendered simulta-

neously share the same bounding box. In the future, we will implement support for non-

aligned volumes based on the solution proposed by Bozorgi et al. [47]. Another simple feature

to add is support for multi-dimensional transfer functions. A wide variety of publications

employ this strategy to simplify separation of relevant tissues in volumetric data. Finally, in a

future version of PRISM, we will allow shaders to define custom parameters that will be

exposed to the client program. This will enable automatic generation of GUI elements in the

client programs to adjust those parameters and allow non-programmers to experiment more

easily with different combinations.

Conclusion

In this paper, we have presented an easy-to-program open-source ray casting volume renderer

and have shown that it can be used to quickly implement a variety of techniques appropriate

for specific visualization problems. Furthermore, we have shown that a simple graphical user

interface allows non-expert users to experiment with a list of already existing shaders to find

the one that best suits the visualization task at hand. We believe that the PRISM framework

has the potential to greatly simplify sharing of volume rendering algorithms in the medical

imaging research community and thus, to accelerate the pace of research in this field.
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7. Viola I, Kanitsar A, Gröller ME. Importance-driven feature enhancement in volume visualization. IEEE

Trans Vis Comput Graph. 2005; 11(4):408–17. https://doi.org/10.1109/TVCG.2005.62 PMID:

16138551
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12. Patel D, Šoltészová V, Nordbotten JM, Bruckner S. Instant Convolution Shadows for Volumetric Detail

Mapping. ACM Trans Graph. 2013; 32(5):154:1–154:18.

13. Stewart AJ. Vicinity Shading for Enhanced Perception of Volumetric Data. In: Proceedings of the IEEE

Visualization Conference. 2003. p. 355–62.

14. Jönsson D, Sundén E, Ynnerman A, Ropinski T. A survey of volumetric illumination techniques for inter-

active volume rendering. Vol. 33, Computer Graphics Forum. 2014. p. 27–51.

15. Ament M, Dachsbacher C. Anisotropic Ambient Volume Shading. IEEE Trans Vis Comput Graph.

2016; 22(1):1015–24. https://doi.org/10.1109/TVCG.2015.2467963 PMID: 26529745

16. Hernell F, Ljung P, Ynnerman A. Local Ambient Occlusion in Direct Volume Rendering. IEEE Trans Vis

Comput Graph. 2010 Jul; 16(4):548–59. https://doi.org/10.1109/TVCG.2009.45 PMID: 20467054

17. Ament M, Sadlo F, Weiskopf D. Ambient volume scattering. IEEE Trans Vis Comput Graph. 2013; 19

(12):2936–45. https://doi.org/10.1109/TVCG.2013.129 PMID: 24051861

18. Crassin C, Neyret F, Sainz M, Green S, Eisemann E. Interactive indirect illumination using voxel cone

tracing. Comput Graph Forum. 2011; 30(7):1921–30.

19. Ament M, Sadlo F, Dachsbacher C, Weiskopf D. Low-pass filtered volumetric shadows. IEEE Trans

Vis Comput Graph. 2014; 20(12):2437–46. https://doi.org/10.1109/TVCG.2014.2346333 PMID:

26356957

20. Wang L, Kaufman AE. Lighting system for visual perception enhancement in volume rendering.

IEEE Trans Vis Comput Graph. 2013; 19(1):67–80. https://doi.org/10.1109/TVCG.2012.91 PMID:

22431550

21. Schott M, Pascal Grosset AV, Martin T, Pegoraro V, Smith ST, Hansen CD. Depth of Field Effects for

Interactive Direct Volume Rendering. Comput Graph Forum. 2011 Jun; 30(3):941–50.

22. Aichert A, Wieczorek M, Wang J, Kreiser M, Wang L, Fallavollita P, et al. The Colored X-Rays. Augment

Environ Comput Interv Lect Notes Comput Sci. 2013; 7815:45–54.

23. Wang J, Kreiser M, Wang L, Navab N, Fallavollita P. Augmented Depth Perception Visualization in 2D/

3D Image Fusion. Comput Med Imaging Graph. 2014 Jul; 38(8):744–52. https://doi.org/10.1016/j.

compmedimag.2014.06.015 PMID: 25066009
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